College and Career Readiness (CCR) Math Standards and Their Implications for Adult Education

Lynda Ginsburg & Cynthia Zafft

CCR Development Process

- Two review panels ELA and Math
- Common Core State Standards served as the basis for discussions (CCSS)
- Using evidence, what CCSS content in the area of mathematics is *relevant* to preparing adult students for success in higher education and training programs?
- Using evidence, which standards in each content area are most important for adult students?

Organization

ELA		Math	
A	К—1	Α	K-1
В	2–3	B	2–3
С	4–5	С	4–5 +6
D	6–8	D	6+ 7-8
E	9–12	E	9-12

What the CCR Standards are Not!

- They are *not* an order in which standards are to be taught.
- They are *not* directions about how instructors should teach.
- They are *not* a full spectrum of support and interventions for students.
- They are *not* a curriculum, so states and programs will need to complement them with high-quality curricula.
- They are *not* a national or federal set of mandates.

A model set of evidence-based CCR standards for use by state and local adult education programs!

Three Key Shifts Prompted by the CCR Standards

- **1. Focus**: Focus strongly where the CCR standards focus.
- 2. Coherence: Design learning around coherent progressions level to level.
- **3. Rigor**: Pursue conceptual understanding, procedural skill and fluency, and application—all with equal intensity.

- High-performing nations significantly narrow the scope of content so that students can focus their time and energy on the major work of the level.
- By focusing deeply on what is emphasized in the standards, students gain strong foundations.
- Identifying concepts that support the major concepts of the level creates a coherent flow of knowledge and skills within the level.

Designing Learning Around Coherent Progressions Level to Level

- Based on how students' mathematical knowledge, skill, and understanding are known to develop over time:
 - Coherence allows students to demonstrate new understanding built on foundations from previous study.
 - Coherence prevents standards from being a list of isolated topics.
 - Coherence means that each standard is not a new event, but an extension of previous learning so less time needs to be spent on re-teaching.

Pursuing Conceptual Understanding, Procedural Skill and Fluency, and Application

— All with Equal Intensity

- Students with solid conceptual understanding know more than "how to get the answer"; they can generalize and apply concepts from several perspectives.
- When students can perform calculations with speed and accuracy (fluency), they are able to access more complex concepts and procedures.
- When students have the ability to use math flexibly, they are then able to apply their knowledge to a wide variety of types of problems.

- The Standards for Mathematical Practice describe varieties of proficiency that students at all levels need to develop.
- When concepts and skills are connected to the Practices, deeper understanding can occur, which allows students to extend them to new situations.
- Emphasis on the Practices shifts the focus from just "how to get the answer" to also "learning how to learn."

Standards for Mathematical Practice

- **MP.1** Make sense of problems and persevere in solving them.
- **MP.2** Reason abstractly and quantitatively.
- **MP.3** Construct viable arguments and critique the reasoning of others.
- **MP.4** Model with mathematics.
- **MP.5** Use appropriate tools strategically.
- MP.6 Attend to precision.
- **MP.7** Look for and make use of structure.
- **MP.8** Look for and express regularity in repeated reasoning.

- Purpose of activity
- Materials
- Directions

Standards for Mathematical Practice: Implications for Instruction

- The Standards for Mathematical Practice are meant to be applied across all levels.
- Not all Standards for Mathematical Practice are appropriate for every lesson—focus should be on developing those Practices that fit well with particular content or activity.
- Important to see to it that there are opportunities to develop all the Standards for Mathematical Practice over the unit or the level of study.
- Teachers' questioning supports development of the Mathematical Practices.

"Focus: Focus strongly where the CCR standards focus."

Implications for Instruction

- Focus on the major work means that some content is more important than other content
 - Focusing narrows but deepens the scope of content.
 - Rather than "a mile wide and an inch deep," focusing results in a "mile deep and an inch wide."
 - Focusing opens the door to strengthening understanding—fewer topics on the list means more time to spend on each one.

Major Areas of Focus in 5 Levels

- Level A: Beginning ABE
- Level B: ABE I
- Level C: ABE II
- Level D: ABE III
- Level E: ASE I And II

Level A (Beginning ABE)

- Developing understanding of whole number place value for tens, and ones
- Developing understanding of addition and subtraction and the properties of these operations
- *Developing initial understanding of equation, variable and the meaning of the equal sign
- Describing and reasoning about shapes and their attributes
- Developing understanding of linear measurement
- *Organize, represent and interpret simple categorical data

Level B (ABE I)

- Extending understanding of base-10 notation
- Adding and subtracting to 1,000; fluency to 100
- Understanding multiplication and division of whole numbers to 100
- Understanding division as inverse of multiplication; single-digit divisors
- Developing understanding of fractions, especially unit fractions
- *Identify and explain patterns in arithmetic
- Using standard units for linear measure
- Developing understanding of area and its relationship to addition and multiplication
- Analyzing 2-dimensional shapes
- *Beginning understanding of scaling picture and bar graphs

Level C (ABE II)

- Extending the number system to positive rational numbers
- Extending place value understanding to decimals
- Attaining fluency with multi-digit operations using whole numbers and decimals
- Understanding fraction equivalence and comparison
- Developing fluency with sums and differences of fractions
- Connecting ratio and rate to whole number multiplication and division
- Writing, evaluating, and interpreting expressions and equations
- Developing understanding of the coordinate plane
- Classifying 2-dimensional shapes based on sides and angles
- Developing an understanding of volume and surface area
- Developing understanding of statistical variability and measures of center and distribution

Level D (ABE III)

- Extending number sense and fluent operations to all rational numbers, including negatives
- Understanding ratio and rate and using them to solve problems
- Applying proportional relationships
- Working with expressions and linear equations
- Solving linear equations and systems of linear equations
- Developing the concept of function
- Graphing functions in the coordinate plane and analyzing their graphs
- Classifying geometric figures based on properties
- Solving problems involving scale drawings
- Measuring 2- and 3-dimensional figures: area, surface area, and volume
- Analyzing 2- and 3-dimensional shapes using distance and angle measurements, similarity, and congruence
- Applying the Pythagorean theorem
- Understanding patterns of association for bivariate data and describing them with a linear equation, when appropriate
- Summarizing data and data distributions
- Drawing inference about populations based on random samples (probability distributions)

Level E (ASE I and II)

- Extending understanding of number systems to the set of real numbers
- Writing equivalent expressions involving radicals and integer exponents
- Reasoning quantitatively through the use of units and appropriate levels of precision
- Defining, evaluating, comparing, and modeling with linear, quadratic, and exponential functions and equations
- Building, interpreting, and analyzing functions using correct notation
- Reasoning with and solving linear, quadratic, and exponential equations and linear inequalities
- Interpreting and using the structure of expressions to solve problems
- Operating with algebraic expressions, including polynomials and rational expressions
- Applying similarity and congruence concepts to geometric figures, including right triangles
- Using geometric models to solve measurement problems involving volume
- Summarizing, describing, displaying, and interpreting data
- Understanding and applying probability concepts
- Summarizing, representing, and interpreting one- and two-variable data, including using frequency tables

Focusing on the Major Work of Each Level

- Purpose of activity
- Materials
- Directions

Which are major focus tasks?

CCR Level	Which of the following represent areas of major focus for the indicated level?			
Level A	Read a calendar, thermometer, and digital clock.	Measure lengths by iterating units.	Create and extend patterns and sequences.	
Level B	Compare fractions with the same numerator.	Add and subtract within 20 by decomposing numbers.	Recognize that equal shares of identical wholes need not have the same shape.	
Level C	Use a line plot to display measurements collected as data.	Decompose 3-D shapes to find the volume of right rectangular prisms.	Compute using all four operations with fractions and decimals.	
Level D	Use ratio reasoning to solve problems.	Locate ordered pairs in the coordinate plane.	Model bivariate data using a linear equation.	
Level E	Solve quadratic inequalities.	Apply linear and quadratic functions to real-world applications.	Create a linear equation to represent a data set.	

Not a major focus of the level

CCR Level	Which of the following represent areas of major focus for the indicated level?		
Level A	Read a calendar, thermometer, and digital clock. <u>NO</u>	Measure lengths by iterating units.	Create and extend patterns and sequences.
Level B	Compare fractions with the same numerator.	Add and subtract within 20 by decomposing numbers. NO – LEVELA	Recognize that equal shares of identical wholes need not have the same shape.
Level C	Use a line plot to display measurements collected as data. <u>NO - LEVEL B</u>	Decompose 3-D shapes to find the volume of right rectangular prisms.	Compute using all four operations with fractions and decimals.
Level D	Use ratio reasoning to solve problems.	Locate ordered pairs in the coordinate plane. <u>NO-LEVEL C</u>	Model bivariate data using a linear equation.
Level E	Solve quadratic inequalities.	Apply linear and quadratic functions to real-world applications.	Create a linear equation to represent a data set. <u>NO-LEVEL D</u>

"Coherence: Design Learning Around Coherent Progressions Level to Level"

Professional Development System

Examining "Coherence" with Data

- Purpose of activity
- Materials
- Directions

Data, Statistics & Probability Standards

A. Develop understanding of statistical variability.	B. Summarize, represent, and interpret data on a single count or measurable variable.
C. Investigate patterns of association in bivariate data.	D. Represent and interpret data.
E. Summarize and describe distributions.	F. Use random sampling to draw inferences about a population.
G. Interpret linear models.	H. Represent and interpret data.

- **Level B:** H. Represent and interpret data.
- **Level C:** A. Develop understanding of statistical variability.
 - E. Summarize and describe distributions.
- **Level D:** F. Use random sampling to draw inferences about a population.
 - C. Investigate patterns of association in bivariate data.
- **Level E:** B. Summarize, represent, and interpret data on a single count or measurable variable.
 - G. Interpret linear models.

- **1. Focus**: Focus strongly where the CCR standards focus.
- **2. Coherence**: Design learning around coherent progressions level to level.
- **3. Rigor**: Pursue conceptual understanding, procedural skill and fluency, and application—all with equal intensity.